Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract The JWST Disk Infrared Spectral Chemistry Survey (JDISCS) aims to understand the evolution of the chemistry of inner protoplanetary disks using the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST). With a growing sample of >30 disks, the survey implements a custom method to calibrate the MIRI Medium Resolution Spectrometer (MRS) to contrasts of better than 1:300 across its 4.9–28μm spectral range. This is achieved using observations of Themis family asteroids as precise empirical reference sources. The high spectral contrast enables precise retrievals of physical parameters, searches for rare molecular species and isotopologues, and constraints on the inventories of carbon- and nitrogen-bearing species. JDISCS also offers significant improvements to the MRS wavelength and resolving power calibration. We describe the JDISCS calibrated data and demonstrate their quality using observations of the disk around the solar-mass young star FZ Tau. The FZ Tau MIRI spectrum is dominated by strong emission from warm water vapor. We show that the water and CO line emission originates from the disk surface and traces a range of gas temperatures of ∼500–1500 K. We retrieve parameters for the observed CO and H2O lines and show that they are consistent with a radial distribution represented by two temperature components. A high water abundance ofn(H2O) ∼ 10−4fills the disk surface at least out to the 350 K isotherm at 1.5 au. We search the FZ Tau environs for extended emission, detecting a large (radius of ∼300 au) ring of emission from H2gas surrounding FZ Tau, and discuss its origin.more » « less
-
Abstract We present a spectroscopic analysis of a sample of 48 M-dwarf stars (0.2 M ⊙ < M < 0.6 M ⊙ ) from the Hyades open cluster using high-resolution H -band spectra from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Our methodology adopts spectrum synthesis with LTE MARCS model atmospheres, along with the APOGEE Data Release 17 line list, to determine effective temperatures, surface gravities, metallicities, and projected rotational velocities. The median metallicity obtained for the Hyades M dwarfs is [M/H] = 0.09 ± 0.03 dex, indicating a small internal uncertainty and good agreement with optical results for Hyades red giants. Overall, the median radii are larger than predicted by stellar models by 1.6% ± 2.3% and 2.4% ± 2.3%, relative to a MIST and DARTMOUTH isochrone, respectively. We emphasize, however, that these isochrones are different, and the fractional radius inflation for the fully and partially convective regimes have distinct behaviors depending on the isochrone. Using a MIST isochrone there is no evidence of radius inflation for the fully convective stars, while for the partially convective M dwarfs the radii are inflated by 2.7% ± 2.1%, which is in agreement with predictions from models that include magnetic fields. For the partially convective stars, rapid rotators present on average higher inflation levels than slow rotators. The comparison with SPOTS isochrone models indicates that the derived M-dwarf radii can be explained by accounting for stellar spots in the photosphere of the stars, with 76% of the studied M dwarfs having up to 20% spot coverage, and the most inflated stars with ∼20%–40% spot coverage.more » « less
An official website of the United States government
